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1 Definitions

Definition 1.1

At time t < T is called an optimal exercise time for the American put with value
P(t,S(t), K, T) if R
P(ta S(t>7K7T) = (K - S(t))Jr :

Definition 2.2

A portfolio process {hg(t), hp(t)}ier invested in a binomial market is said to be self-
financing if

hs(t)S(t — 1) + hp(t)B(t — 1) = hg(t — 1)S(t — 1) + h(t — D) B(t — 1)

holds for all ¢t € 7.

Definition 2.3

A portfolio process {hs(t), hp(t)}+ez invested in a binomial market is called an arbitrage
portfolio if its value V' (t) satisfies

. V(0) =0,
o V(N,z) >0z € {u,d}¥,
o There exists y € {u,d}" such that V(N,y) > 0.

Definition 3.1

A portfolio process {hs(t), hp(t)}ier is called predictable if there exists N functions
Hy, ..., Hy such that H; : (0,00)! — R? and

(hs(t), hp(t)) = Hy(So, ., S(t— 1)),  teT.
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Definition 3.2

A hedging portfolio for a European derivative with pay-off Y = g(S(IN)) at expiration
date T = N is a portfolio process {(hgs(t),hp(t)}icr invested in the underlying stock
and risk-free asset such that its value V(t) satisfies V/(INV) = Y; the latter equality must
be satisfied for all possible paths of the price of the underlying stock, i.e., V(N,z) =
Y (z)Vr € {u,d}".
Definition 3.3

The binomial (fair) price of a European derivative with pay-off Y and maturity N is
given by
Iy (t) = e "W-1) > Gy Gy Y (21, TN)

(xt+17 (A $]\1)€{U, d}Nit

Definition 4.1

A portfolio process {hs(t), hp(t)}iez is said to be hedging an American derivative with
intrisic value Y'(¢) if

VINY=Y(N), V(@) >Y@Vt=0,..,N -1,

where V() = hgS(t) + hgB(t) is the value of the portfolio process at time ¢.

Definition 4.2

The binomial (fair) price IIy (¢) of a standard American derivative with pay-off Y (¢) =
g(S(t)) at time ¢t € {0,1,..., N} is defined by the recurrence formula

ﬂY(N) =Y(N)
Iy (8) = max(Y (1), e " (qul13 (¢ + 1) + qall§- (¢ + 1))

Definition 4.3

A replicating portfolio process for an American derivative with intrinsic value Y (¢) is a
portfolio process that satisfies V (t) = Iy (¢), for all t € {0,..., N} (and for all possible
paths of the stock price).

Definition 4.4

A portfolio process {hg(t), hp(t) }ier is said to generate cash flow C(t — 1), t € Z, if
hs(t)S(t—1)+hp(t)B(t—1)=hg(t—1)S(t—1)+hp(t—1)B(t—1)—-C(t—1),t €L,
or, equivalently

V(t)—V(t—1)=hg(t)(S({t)—S{t—1))+hpt)(Bt)—B(t—1)-Ct—1).

Definition 5.4
Two events A and B are said to be independent if P(AN B) = P(A)P(B).
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Definition 5.15

A discrete stochastic process {Xi, Xs, ...} on the finite probability space (€2, P) is called
a martingale if
]E[Xi+1’X1,X2, ceey X,L] == )(Z VZ Z 1 .

Definition 5.19

Let {W(t)}+cpo, ) be a Brownian motion, & € R, and ¢ > 0. The positive stochastic

process {S(t) }ep, 1)
S(t) _ S(o)eat+O’W(t) 7

is called a geometric Brownian motion.

Definition 6.1

Consider a European derivative with pay-off Y = ¢(S(7T')) at the maturity 7 > 0. Assume
that the price of the underlying stock is given by the geometric brownian motion S(t) =
S(0)ex+eW®  The Black-Scholes price Iy (t) of the derivative at time ¢ € [0,7] is
Iy (t) = v(t, S(t) where

v(t,x) =

—TrT 0_2 y2
‘ 5 / glze" =TV Ay T =T —1.
7 JRr

2 Theorems

Theorem 1.1

Let C(t,S(t), T, K) denote the price of a European call, and let P(t,S(t),T, K) be the
price of the corresponding European put. Assume that there exists a risk-free asset in
the money market with constant interest rate r. If the dominance principle holds, then
forallt < T,

1. The put-call parity holds

S(t)—C(t,5(t),T,K) = Ke "9 — P(t,5(t), T, K).

2. If r >0 then C(t,S(t),T,K) > (S(t) — K); the strict inequality holds for r > 0.
3. If r >0, the map T +— C(t, S(t), T, K) is non-decreasing.
4. The maps K — C(t,S(t),T,K) and K — P(t,5(t),T, K) are convex.

Proof

1. Consider a portfolio A which is long one share of the stock and one share of the put
option, and short of the call and K/B(T) shares of the risk-free asset. The value
of this portfolio at maturity is

Va(T) = S(T) + (K = S(T)); — (S(T) = K); — —~=B(T) = 0.
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Hence by the dominance principle V4 > 0 for ¢t < T', that is
S(t)+ P(t,S(t),K,T) - C(t,S(t),K,T) — Ke"T=T) > 0.

Now consider the portfolio —A with the opposite position on each asset. Again we
have V_4(T") = 0 and thus V_4(t) = —V4(t) > 0 for ¢t < T. Hence

S(t)+ P(t,S(t), K,T) — C(t,S(t), K,T) — Ke"T=) < 0.

Thus the left hand side in the previous two inequalities must be zero, which gives
the put-call parity.

2. We can assume S(t) > K otherwise it’s trivial. By the put-call parity, using that
P(t,S(t),K,T) >0,

C(t,S(t), K. T) = S(t) = Ke "™ + P(¢,S(t), K, T) > S(t) - Ke """

the right hand side equals S(t) — K for r = 0 and is strictly greater than this
quantity for r > 0. As S(t) — K = (S(t) — K) for S(t) > K, the claim follows.

3. Consider a portfolio A which is long one call with maturity 75 and strike K and
short one call with maturity 77 and strike K, where T, > 77 > t. By claim 2 we
have

C(Ty,S(), K, Ty) > (S(Th) — K)y =C(ty,S(Th), K, T1) ,
i.e. V4(T1) > 0fort < Ty. Hence V4(t) > 0ie. C(t,5(¢), K, T3) > C(t, S(t), K, T1),
which is the claim.

4. We prove the statement for call options, the argument for put options being the
same. Let Ky, K1 > 0 and 0 < A < 1 be given. Consider a portfolio A which is
short one share with strike AKy + (1 — A\)K; and maturity 7', long A shares of a
call with strike K; and maturity 7', long (1 — \) shares of a call with strike K and
maturity 7. The value of this portfolio at maturity is

Va(T) = =(S(T) = (AK1 + (1 = M) Ko))+ + A(S(T) — K1)+ + (1 = N)(S(T) — Ko)+ -

The convexity of the function f(z) = (S(T")—xz) gives V4(T') > 0, and so V4(t) > 0
by the dominance principle. The latter inequality is

O(t, S(), AKy + (1 — N Ko, T) < AC(t, (1), K1, T) + (1 — NCO(t, S(t), Ko, T)

which is the claim for call options.

Theorem 2.1

Let {(hs(t),hp(t))}ier be a self-financing portfolio process with value V(N) at time
t = N. Define

e’ — e
W= qa=1—qu.

Then for t =0,...,N — 1, V(t) is given by

V(t) = B_T(N_T) Z uypq ~ " QxNV(N7 aj) .

(zt+1, ey IN)G{U, d}Nﬁt
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In particular we have the initial value

V)= 3 g @ V(N ).

x€{u, d}N

Moreover the portfolio satisfies the recurrence formula

V(t—1)=e"[q.V"t) + V(). teT,
where
Vu(t) = h5<t)8(t - 1)6“ + hB(t)B(t — 1)€T s
Vet) = hg(t)S(t — 1)e? + hg(t)B(t — 1)e.
Proof

We prove it by induction for t =0,..., N — 1.

Step 1
We begin with ¢ = N — 1. Then
V(N =1)=e"[g.V (N, (x1, ..., en_1,u)) + ¢V (N, (21, ...,x5_1,d))] . (1)
Here, we have
V(N, (z1,...,xny_1,u)) = hg(N)S(N — 1)e" + hg(N)B(N — 1)e",

similarily for V(N (x1, ..., zn_1,d)) but u replaced with d, which follows by the definition
of portfolio vlaue. Thus V(N — 1) is equal to

V(N — 1)
= ¢ "[qu(hs(N)S(N — 1)e" + hp(N)B(N — 1)e")
+qa(hs(N)S(N — 1)t + hp(N)B(N — 1)e)]

= ¢ "[hs(N)S(N = 1)e” + hg(N)B(N — 1)¢’]

— hs(N)S(N — 1) + hs(N)B(N — 1),

since e'q, + e%qy = €" and ¢, + g4 = 1. This proves the claim for t = N — 1, by the
definition of self-financing portfolios.

Step 2
Now assume this is true at ¢t + 1 i.e.

V(t+1)= e T(IN—t=1) Z Qorys * Quy V(N T). (2)

(Tt42, .y N )E{u,d}N—t-1
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Step 3

We now prove it at time ¢. Let

Vit +1)=hs(t+1)S(t)e" + hp(t+ 1)B(t)e" assuming z;11 = u,
VAt +1) = hs(t+1)S(t)e? + hp(t + 1)B(t)e" assuming x;1 = d.

This gives us
e auV'(t+1) + qaV(t + 1)] = hs(t + 1)S(t) + h(t + 1) B(1).
By the self financing property we have
e gVt + 1)+ qaVIt + )] =V (1),

which proves that V' satisfies the recurrence formula. Moreover, with the induction hy-
pothesis we have

Vet +1) =e W7D S Guys Gy VN, T, o, T U Ty, o, TN

(Tt42y N )E{u, d}N—t=1

Vd(t + ]-) = e_T(N_t_l) Z Gaiyo " " q;rNV(Nu L1y ey Lty d7 Tt+42, ,ZUN) )

(zt42, -y N )E{u, d}N—t=1

using these, with equation (2), we obtain

V(t) = e T(N=T) Z Qorr * Qay V(N ).

(Tt41, TN )E{u, d}N -t

Theorem 2.2

The binomial market is arbitrage free iff r € (d, u).

Proof

The proof is divided into 2 steps, first we prove the claim for the 1-period model. The
generalization for the multiperiod model N > 1 is carried out in step 2.

Step 1

Let the portfolio position in the 1-period model be constant, (thus be self-financing over
0,1]), i.e. let
hs(0) = hs(1) = hg, hg(0) =hg(l) = hp. (3)

The portfolio value at t = 0 is

V(O) == hsso —|— hBBO y (4)
while at time ¢t = 1 it is
V1) = V(1,u) = hgSpe" + hpBge" if stock goes up at t = 1 (5)
| V(1,d) = hgSpe? + hgBye" if stock goes down at ¢t = 1
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Thus the portfolio is an arbitrage if V' (0) = 0, i.e.
hsSo + hpBy =0, (6)

if V(1) >0ie.
hsSoeu + hBB()GT Z 0 (7)
hSS()ed + hBBoeT 2 0

and if at least one of the two inequalities in (7) is strict. Now assume that (hg, hp) is an
arbitrage portfolio. From (6) we have hgSy = —hpBy, thus (7) becomes

hgSo(e* —e") >0, (8)
hsSo(e® —e") > 0. 9)

We have hg # 0 since at least one of the inequalities must be strict. Assuming hg > 0
then we obtain from the two inequalities above that d > r. Instead, assuming hg < 0
we instead obtain r > u. Hence the existence of an arbitrage portfolio implies r > u or
r <d,ie. r ¢ (d,u). Which proves that for r € (d,u) there is no arbitrage portfolio for
the 1-period model. Now we need to prove that r € (d,u) is necessary for the absence
of arbitrages, we construct an arbitrage portfolio when r & (d,u). Assume r < d, pick
hs = 1 and hp = —Sy/By. Then V(0) = 0. Further, hsSpe? + hgBoe™ > 0 is trivially
satisfied, and since u > d we have

hgSoe™ + hpBye™ = Sp(e” — ") > Sy(e? —e") > 0. (10)

This shows that one can construct an arbitrage portfolio when r < d, a similiar argument
is done for r > u. We now continue with step 2.

Step 2

Again let r ¢ (d,u), we've shown that in the l-period model there exists an arbi-
trage portfolio (hg,hg). Now by investing the whole value of the portfolio (hg,hp)
at t = 1 in the risk-free asset, we can build a self-financing arbitrage portfolio pro-
cess {hs(t), hp(t) her for the multiperiod model. This portfolio satisfies V(0) = 0 and
V(N,z) =V (1,2)e"™=D > 0 along every path z € {u,d}". Moreover, (hg, hp) is an ar-
bitrage, therefore V(1,y) > 0 for some y € {u,d}", hence V(N,y) > 0. The constructed
self-financing portfolio process {hgs(t), hp(t)}icz is an arbitrage, now we have to prove
the “only if” part for the multiperiod model. By Theorem 2.1

VOy=e™ > ()™ (@) IV(N,z). (11)

ze{u, d}V

Now assume that the portfolio is an arbitrage. Then V(0) = 0 and V' (N, z) > 0. We can
consider only paths such that V' (N, z) > 0 which exists since the portfolio is an arbitrage.
But then (11) can be zero only if one of ¢, or g is zero, or if opposite signs. Since u > d
we have

Gqu =0, resp. @ =0=1r=d, resp. u =71

(gu>0,q4<0), resp. (¢, <0,qs>0)=>u<r, resp. r < d. (12)

We conclude that the existence of a self-financing arbitrage portfolio entails r & (d, u)
which completes the proof.
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Theorem 3.2

Consider a standard European derivative with pay-off Y = g(S(V)) at the time of ma-
turity N. Then the portfolio given by

hs(0) = hg(1), hg(0) = hp(1),

and for t € 7,
1 TI%(t) — L (t)
hs(t) = Y Y
s(l) Sit—1) ev—ed 7
e eI (t) — eTI% (¢
hB(t) — Y( ) Y( )

B(t—1) et — ed ’
is a self-financing, predictable, hedging portfolio.

Proof

We begin proving the hedging property, we have

S@t) Ty(t) —T§(t) e "B(t) e"I{(t) — /Ty (1)

V() = hsOS() + B0 = 5t pao1) e

Here e "B(t)/B(t —1) = 1 and S(t)/S(t — 1) is either e* or e? depending on S(t). Using
these two values we obtain Vi%(t) = 1% (¢), and Vi(t) = TI%.(t), that is V(¢) = Iy (¢) i.e.
replicating the derivative. In particular, for t = N we have V(N) = IIy(N) = Y, hence
the portfolio is hedging the derivative.

Now, proving the self-financing property, we have

I (£)(1 — e™") + TI§ () (e" " —

hs(t)S(t — 1)+ hp(t)B(t — 1) = Y _mi—1),

by using the definition of ¢, ¢; as well as the recurrence formula. Also we already know
that the portfolio is replicating the derivative, i.e. V(t — 1) = Iy (¢t — 1), therefore

hs(t)S(t—1)+ hp(t)B(t—1)=V(t —1).
Finally, the portfolio is predictable, since

HY(t) = e_r(N_t) Z Qrepy © " qug(S(t) exp<xt+1 +..+ xN)) )

(@et1, s on)E{u, d}N—t

therefore, we have

() = e "™ S oy Guyg(S(E— e explag + .+ 2n)

(41, o) E{u, dpN

hence T1%(¢) is a deterministic function of S(¢—1) and the same property holds for TI¢.(¢).
Thus hg(t), hp(t) are deterministic functions of S(¢ — 1), which proves that the portfolio
is predictable.
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Theorem 4.1

Consider a standard American derivative with intrinsic value Y'(¢) and let Iy (¢) be
its binomial fair price. Define the portfolio process {hg(t), hp(t)}er and the cash flow
process C(t) recursively as follows:

C0)=0, Ct—1)=Ty(t—1)—e"[gII%t) + @li@#)], te{2,..,N} (13)
hs(1) =hs(0),  hp(1) = hp(0), (14)
and for ¢t € {1, ..., N},
2 1Ty —Tig (1)
pr— 1
hs(t) Sit—1) ev—ed (15)
" e eI (t) — efTI% (1)
hp(t) = X LAY 1
5(t) B(t—1) et — et (16)
Then the value of this portfolio process satisfies
V(t) = Iy (t)Vt € {0, ..., N}, (17)
and A A
V(it—1)=hst)S{t—-1)+hpt)B(t—1)+C(t—1), VteT. (18)
Proof

By using the equations (13), (14), (15), (16) into equations (17) and (18) we obtain
Vi(t) = he(t)S(t — 1)e" + hp(t)B(t — 1)e! = TIy(t)

similiar calculations proves V4(t) = TI%(t), hence (17) holds. Also replacing equations
(13), (14), (15), (16) into the right hand side of (18), the latter is equal to IIy (¢t — 1),
which we proved is equal to V(¢ — 1), hence (18) holds.

Theorem 5.3

If r ¢ (d,u) there is no probability measure P, on the sample space €2y such that the
discounted stock price {S(t)}+ez is a martingale. For r € (d,u), {S(¢) }+ez is a martingale
with respect to the probability measure P, where

er — el

qzeu_ed'

Moreover P, is the only probability meausure on €y for which {S(t)},ez is a martingale.
Proof
By definition {S(t)}se7 is a martingale if and only if

EleS(t)[S(1),...,S(t —1)] = e "¢ VS(t — 1)Vt € T. (19)
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Clearly, conditioning on S(1), ..., S(t—1) is the same as taking the expectation conditional
to S(1),...,S(t — 1), hence (19) is equivalent to

E[S(t)|S(1),....S(t—1)]=¢€"S(t—1),Vt € L.
Moreover

S(t)
S(t—1)

however since S(t — 1) is known, and because S(t)/S(t — 1) is either " with probability
p, or e? with probability 1 — p, and is independent of S(1), ..., S(t — 1), it follows that

BE[S(t)[S(1),...,S(t —1)] = S(t — 1)(e“p + e*(1 — p)).

Therefore E[S(¢)[S(1), ..., S(t —1)] = e"S(t — 1) holds iff e” = e“p + (1 — p). The latter
has a solution p € (0, 1) iff » € (d, u), when it exists it is given by p = g¢.

E[S(t)|S(1), ..., S(t — 1)] = E[S(t — 1)

1S(1), ..., S(t — 1)], (20)

Theorem 5.4
Let E,[] denote the expectation in the probability measure P,. We have

E,[S(N)] = S(0)(e"p+e’(1—p))V,  EJ[S(N)] = S(0)e™. (21)

Proof

We prove only the first formula because the second formula follows by the first one using
that etq + e(1 — ¢q) = e". We have

E,[S(N)] = E,[S(0) exp(X; + ... + Xx)] = S(O)E,[Y], (22)

where Y is the random variable Y = exp(X;+...+ X3) = exp(uNg (w) +dNr(w)), w € Q.
Now using that Ny = N — Ny it follows that

Ey[S(N)] = 5(0) Yo eNuttNrplin(1 — p)Nr = 5(0)eN (1 —p)V 3 <ed<ep) .

weQy wey 1—p)

Now, since for k = 0, ..., N there is (]IX) sample points w € Qy such that Ng(w) = k, we

rewrite the above expresssion and using the binomial theorem, we obtain the following

5,500 = 5019 S (V) (rets) =50 (14 7 2)

k=0 1 _p) (1 _p)

= S(0)(e’(1 = p)ep)™.

Theorem 5.10
The density of the random variable S(t) is given by

fS(t) (SL’) = ]I$>O exXp <_ (logx — 1Og S(O) - Oét>2> )

xov/2mt 202t

where I~ is the indicator function of the set z > 0.

10
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Proof
The density of S(t) is given by

d

fS(t)(x)aFS(t)(x) ,

where Fy) is the distribution of S(t), i.e.,

Clearly, fsu) = Fs@ = 0 for x < 0. For x > 0 we use that

1 x
< i i < — — = .
S(t) <z if and only if ~ W(t) < . <10g 50 oaf) A(z)

Thus

y2

P(S(t) <z)=P(—co < W(t) < Az e 2 dt,

A(z)
>>=¢%/_w

where for the second equality we used that W (t) € N(0,t). Hence

Foen () d 1 /A(r) g it 1 _aep2 dA(x)
T) = — _— e t —= (& t
5® dr \ 27t /- V2t dx

for x > 0, that is

1 (logx — log S(0) — at)?
= - > 0.
fsw(@) ox/2rt P < 202t &

Theorem 6.2

The Black-Scholes price at time ¢ of a European call option with strike K > 0, maturity
time T > 0 is given by C(t, S(t)) where

log (%) + (r —10?)
o\T

where ® is the standard normal distribution. The Black-Scholes price of the corresponding
put option is given by P(t,S(t)) where

.
C(t,z) = 2®(dy) — Ke " ®(dy) , dy = ydy=dy+oVT,  (23)

P(t,x) = —x®(—dy) + Ke " ®(—ds) .
Moreover the put-call parity holds

C(t, S(t)) — P(t,S(t)) = S(t) — Ke™'™ . (24)

11
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Proof

We derive the price for call options, since the argument is similiar for put options. Recall
the pay-off function g(z) = (2 — K), we have

-rT 2 2
C(t,z) = < o /}Rg (xeﬂrﬂwﬁy - K) e~ T dy.

o2
Note that g is nonzero when ze™"=%)t7V7™ — K ie. when y > —d,. Thus using —3y? +
o\TY = _%(y — 0T + % Thus we obtain

(xeT(r_U;H—ng /OO 6—%(y—a\ﬁ)2 dy — K/Oo 6_% dy) .
—ds —da

—rT7

e

V2r

Now consider the left integral with the change of variables u = y — o+/7, which gives
the lower integral limit © = —dy — 04/7 = —d;. Now since we have two integrals of even
functions, symmetric around zero, we have

—-rT 00 1 0o o2
C(t,z) = f/ﬁ (xe”/d e 2% du — K/d ez dy) =
—ai —a2

e T d1 1,2 d K do e d
— re™ e 3% du — e _
2 [oo /—oo 4
= ZE@(Ch) — KG_TT(I)(dQ) .

C(t,z) =

Finally, the put-call parity follows since
C(t,x) — P(t,x) = x®(dy) — Ke " ®(dy) — (—zP(—dy) + Ke " P(—dy)) =

= 2(®(dh) + O(d)) — Ke " (B(ds) + B(dy)) = w — Ke™™,
since ®(u) + ®(—u) = 1. Thus the claims follows.
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