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1 Definitions

Definition 1.1
At time t < T is called an optimal exercise time for the American put with value
P̂ (t, S(t), K, T ) if

P̂ (t, S(t), K, T ) = (K − S(t))+ .

Definition 2.2
A portfolio process {hS(t), hB(t)}t∈I invested in a binomial market is said to be self-
financing if

hS(t)S(t− 1) + hB(t)B(t− 1) = hS(t− 1)S(t− 1) + hB(t− 1)B(t− 1)

holds for all t ∈ I.

Definition 2.3
A portfolio process {hS(t), hB(t)}t∈I invested in a binomial market is called an arbitrage
portfolio if its value V (t) satisfies

• V (0) = 0,

• V (N, x) ≥ 0∀x ∈ {u, d}N ,

• There exists y ∈ {u, d}N such that V (N, y) > 0.

Definition 3.1
A portfolio process {hS(t), hB(t)}t∈I is called predictable if there exists N functions
H1, ..., HN such that Ht : (0,∞)t → R

2 and

(hS(t), hB(t)) = Ht(S0, ..., S(t− 1)), t ∈ I .
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Definition 3.2
A hedging portfolio for a European derivative with pay-off Y = g(S(N)) at expiration
date T = N is a portfolio process {(hS(t), hB(t)}t∈I invested in the underlying stock
and risk-free asset such that its value V (t) satisfies V (N) = Y ; the latter equality must
be satisfied for all possible paths of the price of the underlying stock, i.e., V (N,x) =
Y (x)∀x ∈ {u, d}N .

Definition 3.3
The binomial (fair) price of a European derivative with pay-off Y and maturity N is
given by

ΠY (t) := e−r(N−T ) ∑
(xt+1, ..., xN )∈{u, d}N−t

qxt+1 · · · qxNY (x1, ..., xN) .

Definition 4.1
A portfolio process {hS(t), hB(t)}t∈I is said to be hedging an American derivative with
intrisic value Y (t) if

V (N) = Y (N) , V (t) ≥ Y (t)∀t = 0, ..., N − 1 ,

where V (t) = hSS(t) + hBB(t) is the value of the portfolio process at time t.

Definition 4.2
The binomial (fair) price Π̂Y (t) of a standard American derivative with pay-off Y (t) =
g(S(t)) at time t ∈ {0, 1, ..., N} is defined by the recurrence formula

Π̂Y (N) = Y (N)
Π̂Y (t) = max(Y (t), e−r(quΠ̂u

Y (t+ 1) + qdΠ̂d
Y (t+ 1)))

.

Definition 4.3
A replicating portfolio process for an American derivative with intrinsic value Y (t) is a
portfolio process that satisfies V (t) = Π̂Y (t), for all t ∈ {0, ..., N} (and for all possible
paths of the stock price).

Definition 4.4
A portfolio process {hS(t), hB(t)}t∈I is said to generate cash flow C(t− 1), t ∈ I, if

hS(t)S(t− 1) + hB(t)B(t− 1) = hS(t− 1)S(t− 1) + hB(t− 1)B(t− 1)−C(t− 1) , t ∈ I ,

or, equivalently

V (t)− V (t− 1) = hS(t)(S(t)− S(t− 1)) + hB(t)(B(t)−B(t− 1))− C(t− 1) .

Definition 5.4
Two events A and B are said to be independent if P(A ∩B) = P(A)P(B).
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Definition 5.15
A discrete stochastic process {X1, X2, ...} on the finite probability space (Ω,P) is called
a martingale if

E[Xi+1|X1, X2, ..., Xi] = Xi ∀i ≥ 1 .

Definition 5.19
Let {W (t)}t∈[0, T ] be a Brownian motion, α ∈ R, and σ > 0. The positive stochastic
process {S(t)}t∈[0, T ]

S(t) = S(0)eαt+σW (t) ,

is called a geometric Brownian motion.

Definition 6.1
Consider a European derivative with pay-off Y = g(S(T )) at the maturity T > 0. Assume
that the price of the underlying stock is given by the geometric brownian motion S(t) =
S(0)eαt+σW (t). The Black-Scholes price ΠY (t) of the derivative at time t ∈ [0, T ] is
ΠY (t) = v(t, S(t) where

v(t, x) = e−rτ√
2π

∫
R

g(xe(r−σ
2

2 )τ+σ
√
τy)e−

y2
2 dy , τ = T − t .

2 Theorems

Theorem 1.1
Let C(t, S(t), T,K) denote the price of a European call, and let P (t, S(t), T,K) be the
price of the corresponding European put. Assume that there exists a risk-free asset in
the money market with constant interest rate r. If the dominance principle holds, then
for all t < T ,

1. The put-call parity holds

S(t)− C(t, S(t), T,K) = Ke−r(T−t) − P (t, S(t), T,K) .

2. If r ≥ 0 then C(t, S(t), T,K) ≥ (S(t)−K)+; the strict inequality holds for r > 0.

3. If r ≥ 0, the map T 7→ C(t, S(t), T,K) is non-decreasing.

4. The maps K 7→ C(t, S(t), T,K) and K 7→ P (t, S(t), T,K) are convex.

Proof

1. Consider a portfolio A which is long one share of the stock and one share of the put
option, and short of the call and K/B(T ) shares of the risk-free asset. The value
of this portfolio at maturity is

VA(T ) = S(T ) + (K − S(T ))+ − (S(T )−K)+ −
K

B(T )B(T ) = 0 .
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Hence by the dominance principle VA ≥ 0 for t < T , that is

S(t) + P (t, S(t), K, T )− C(t, S(t), K, T )−Ke−r(T−T ) ≥ 0 .

Now consider the portfolio −A with the opposite position on each asset. Again we
have V−A(T ) = 0 and thus V−A(t) = −VA(t) ≥ 0 for t < T . Hence

S(t) + P (t, S(t), K, T )− C(t, S(t), K, T )−Ke−r(T−t) ≤ 0 .

Thus the left hand side in the previous two inequalities must be zero, which gives
the put-call parity.

2. We can assume S(t) ≥ K otherwise it’s trivial. By the put-call parity, using that
P (t, S(t), K, T ) ≥ 0,

C(t, S(t), K, T ) = S(t)−Ke−r(T−t) + P (t, S(t), K, T ) ≥ S(t)−Ke−r(T−t) ;

the right hand side equals S(t) − K for r = 0 and is strictly greater than this
quantity for r > 0. As S(t)−K = (S(t)−K)+ for S(t) ≥ K, the claim follows.

3. Consider a portfolio A which is long one call with maturity T2 and strike K and
short one call with maturity T1 and strike K, where T2 > T1 ≥ t. By claim 2 we
have

C(T1, S(T1), K, T2) ≥ (S(T1)−K)+ = C(t1, S(T1), K, T1) ,
i.e. VA(T1) ≥ 0 for t < T1. Hence VA(t) ≥ 0 i.e. C(t, S(t), K, T2) ≥ C(t, S(t), K, T1),
which is the claim.

4. We prove the statement for call options, the argument for put options being the
same. Let K0, K1 > 0 and 0 < λ < 1 be given. Consider a portfolio A which is
short one share with strike λK0 + (1 − λ)K1 and maturity T , long λ shares of a
call with strike K1 and maturity T , long (1− λ) shares of a call with strike K0 and
maturity T . The value of this portfolio at maturity is

VA(T ) = −(S(T )− (λK1 + (1− λ)K0))+ + λ(S(T )−K1)+ + (1− λ)(S(T )−K0)+ .

The convexity of the function f(x) = (S(T )−x)+ gives VA(T ) ≥ 0, and so VA(t) ≥ 0
by the dominance principle. The latter inequality is

C(t, S(t), λK1 + (1− λ)K0, T ) ≤ λC(t, S(t), K1, T ) + (1− λ)C(t, S(t), K0, T ) ,

which is the claim for call options.

Theorem 2.1
Let {(hS(t), hB(t))}t∈I be a self-financing portfolio process with value V (N) at time
t = N . Define

qu = er − ed

eu − ed
, qd = 1− qu .

Then for t = 0, ..., N − 1, V (t) is given by

V (t) = e−r(N−T ) ∑
(xt+1, ..., xN )∈{u, d}N−t

qxt+1 · · · qxNV (N, x) .
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In particular we have the initial value

V (0) = e−rN
∑

x∈{u, d}N
qNu(x)
u q

Nd(x)
d V (N, x) .

Moreover the portfolio satisfies the recurrence formula

V (t− 1) = e−r[quV u(t) + qdV
d(t)] , t ∈ I ,

where
V u(t) = hS(t)S(t− 1)eu + hB(t)B(t− 1)er ,
V d(t) = hS(t)S(t− 1)ed + hB(t)B(t− 1)ed .

Proof

We prove it by induction for t = 0, ..., N − 1.

Step 1

We begin with t = N − 1. Then

V (N − 1) = e−r[quV (N, (x1, ..., xN−1, u)) + qdV (N, (x1, ..., xN−1, d))] . (1)

Here, we have

V (N, (x1, ..., xN−1, u)) = hS(N)S(N − 1)eu + hB(N)B(N − 1)er ,

similarily for V (N, (x1, ..., xN−1, d)) but u replaced with d, which follows by the definition
of portfolio vlaue. Thus V (N − 1) is equal to

V (N − 1)
= e−r[qu(hS(N)S(N − 1)eu + hB(N)B(N − 1)er)
+qd(hS(N)S(N − 1)ed + hB(N)B(N − 1)er)]
= e−r[hS(N)S(N − 1)er + hB(N)B(N − 1)er]
= hS(N)S(N − 1) + hB(N)B(N − 1) ,

since euqu + edqd = er and qu + qd = 1. This proves the claim for t = N − 1, by the
definition of self-financing portfolios.

Step 2

Now assume this is true at t+ 1 i.e.

V (t+ 1) = e−r(N−t−1) ∑
(xt+2, ..., xN )∈{u, d}N−t−1

qxt+2 · · · qxNV (N, x) . (2)
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Step 3

We now prove it at time t. Let

V u(t+ 1) := hS(t+ 1)S(t)eu + hB(t+ 1)B(t)er assuming xt+1 = u ,
V d(t+ 1) := hS(t+ 1)S(t)ed + hB(t+ 1)B(t)er assuming xt+1 = d .

This gives us

e−r[quV u(t+ 1) + qdV
d(t+ 1)] = hS(t+ 1)S(t) + hB(t+ 1)B(t) .

By the self financing property we have

e−r[quV u(t+ 1) + qdV
d(t+ 1)] = V (t) ,

which proves that V satisfies the recurrence formula. Moreover, with the induction hy-
pothesis we have

V u(t+ 1) = e−r(N−t−1) ∑
(xt+2, ..., xN )∈{u, d}N−t−1

qxt+2 · · · qxNV (N, x1, ..., xt, u, xt+2, ..., xN) ,

V d(t+ 1) = e−r(N−t−1) ∑
(xt+2, ..., xN )∈{u, d}N−t−1

qxt+2 · · · qxNV (N, x1, ..., xt, d, xt+2, ..., xN) ,

using these, with equation (2), we obtain

V (t) = e−r(N−T ) ∑
(xt+1, ..., xN )∈{u, d}N−t

qxt+1 · · · qxNV (N, x) .

Theorem 2.2
The binomial market is arbitrage free iff r ∈ (d, u).

Proof

The proof is divided into 2 steps, first we prove the claim for the 1-period model. The
generalization for the multiperiod model N > 1 is carried out in step 2.

Step 1

Let the portfolio position in the 1-period model be constant, (thus be self-financing over
[0, 1]), i.e. let

hS(0) = hS(1) = hS , hB(0) = hB(1) = hB . (3)
The portfolio value at t = 0 is

V (0) = hSS0 + hBB0 , (4)

while at time t = 1 it is

V (1) =
{
V (1, u) = hSS0e

u + hBB0e
r if stock goes up at t = 1

V (1, d) = hSS0e
d + hBB0e

r if stock goes down at t = 1 (5)
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Thus the portfolio is an arbitrage if V (0) = 0, i.e.

hsS0 + hBB0 = 0 , (6)

if V (1) ≥ 0 i.e.
hSS0e

u + hBB0e
r ≥ 0

hSS0e
d + hBB0e

r ≥ 0 (7)

and if at least one of the two inequalities in (7) is strict. Now assume that (hS, hB) is an
arbitrage portfolio. From (6) we have hSS0 = −hBB0, thus (7) becomes

hSS0(eu − er) ≥ 0 , (8)

hSS0(ed − er) ≥ 0 . (9)
We have hS 6= 0 since at least one of the inequalities must be strict. Assuming hS > 0
then we obtain from the two inequalities above that d ≥ r. Instead, assuming hS < 0
we instead obtain r ≥ u. Hence the existence of an arbitrage portfolio implies r ≥ u or
r ≤ d, i.e. r 6∈ (d, u). Which proves that for r ∈ (d, u) there is no arbitrage portfolio for
the 1-period model. Now we need to prove that r ∈ (d, u) is necessary for the absence
of arbitrages, we construct an arbitrage portfolio when r 6∈ (d, u). Assume r ≤ d, pick
hS = 1 and hB = −S0/B0. Then V (0) = 0. Further, hSS0e

d + hBB0e
r ≥ 0 is trivially

satisfied, and since u > d we have

hSS0e
u + hBB0e

r = S0(eu − er) > S0(ed − er) ≥ 0 . (10)

This shows that one can construct an arbitrage portfolio when r ≤ d, a similiar argument
is done for r ≥ u. We now continue with step 2.

Step 2

Again let r 6∈ (d, u), we’ve shown that in the 1-period model there exists an arbi-
trage portfolio (hS, hB). Now by investing the whole value of the portfolio (hS, hB)
at t = 1 in the risk-free asset, we can build a self-financing arbitrage portfolio pro-
cess {hS(t), hB(t)}t∈I for the multiperiod model. This portfolio satisfies V (0) = 0 and
V (N, x) = V (1, x)er(N−1) ≥ 0 along every path x ∈ {u, d}N . Moreover, (hS, hB) is an ar-
bitrage, therefore V (1, y) > 0 for some y ∈ {u, d}N , hence V (N, y) > 0. The constructed
self-financing portfolio process {hS(t), hB(t)}t∈I is an arbitrage, now we have to prove
the “only if” part for the multiperiod model. By Theorem 2.1

V (0) = e−rN
∑

x∈{u, d}N
(qu)Nu(x)(qd)Nd(x)V (N, x) . (11)

Now assume that the portfolio is an arbitrage. Then V (0) = 0 and V (N, x) ≥ 0. We can
consider only paths such that V (N, x) > 0 which exists since the portfolio is an arbitrage.
But then (11) can be zero only if one of qu or qd is zero, or if opposite signs. Since u > d
we have

qu = 0 , resp. qd = 0⇒ r = d , resp. u = r
(qu > 0 , qd < 0) , resp. (qu < 0 , qd > 0)⇒ u < r , resp. r < d .

(12)

We conclude that the existence of a self-financing arbitrage portfolio entails r 6∈ (d, u)
which completes the proof.
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Theorem 3.2
Consider a standard European derivative with pay-off Y = g(S(N)) at the time of ma-
turity N . Then the portfolio given by

hS(0) = hS(1) , hB(0) = hB(1) ,

and for t ∈ I,

hS(t) = 1
S(t− 1)

Πu
Y (t)− Πd

Y (t)
eu − ed

,

hB(t) = e−r

B(t− 1)
euΠd

Y (t)− edΠu
Y (t)

eu − ed
,

is a self-financing, predictable, hedging portfolio.

Proof

We begin proving the hedging property, we have

V (t) = hS(t)S(t) + hB(t)B(t) = S(t)
S(t− 1)

Πu
Y (t)− Πd

Y (t)
eu − ed

+ e−rB(t)
B(t− 1)

euΠd
Y (t)− edΠu

Y (t)
eu − ed

.

Here e−rB(t)/B(t− 1) = 1 and S(t)/S(t− 1) is either eu or ed depending on S(t). Using
these two values we obtain V u

Y (t) = Πu
Y (t), and V d

Y (t) = Πd
Y (t), that is V (t) = ΠY (t) i.e.

replicating the derivative. In particular, for t = N we have V (N) = ΠY (N) = Y , hence
the portfolio is hedging the derivative.
Now, proving the self-financing property, we have

hS(t)S(t− 1) + hB(t)B(t− 1) = Πu
Y (t)(1− ed−r) + Πd

Y (t)(eu−r − 1)
eu − ed

= ΠY (t− 1) ,

by using the definition of qu, qd as well as the recurrence formula. Also we already know
that the portfolio is replicating the derivative, i.e. V (t− 1) = ΠY (t− 1), therefore

hS(t)S(t− 1) + hB(t)B(t− 1) = V (t− 1) .

Finally, the portfolio is predictable, since

ΠY (t) := e−r(N−t)
∑

(xt+1, ..., xN )∈{u, d}N−t

qxt+1 · · · qxNg(S(t) exp(xt+1 + ...+ xN)) ,

therefore, we have

Πu
Y (t) := e−r(N−t)

∑
(xt+1, ..., xN )∈{u, d}N−t

qxt+1 · · · qxNg(S(t− 1)eu exp(xt+1 + ...+ xN)) ,

hence Πu
Y (t) is a deterministic function of S(t−1) and the same property holds for Πd

Y (t).
Thus hS(t), hB(t) are deterministic functions of S(t− 1), which proves that the portfolio
is predictable.
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Theorem 4.1
Consider a standard American derivative with intrinsic value Y (t) and let Π̂Y (t) be
its binomial fair price. Define the portfolio process {ĥS(t), ĥB(t)}t∈I and the cash flow
process C(t) recursively as follows:

C(0) = 0 , C(t− 1) = Π̂Y (t− 1)− e−r[quΠ̂u
Y (t) + qdΠ̂d

Y (t)] , t ∈ {2, ..., N} (13)

ĥS(1) = ĥS(0) , ĥB(1) = ĥB(0) , (14)
and for t ∈ {1, ..., N},

ĥS(t) = 1
S(t− 1)

Π̂u
Y (t)− Π̂d

Y (t)
eu − ed

, (15)

ĥB(t) = e−r

B(t− 1)
euΠ̂d

Y (t)− edΠ̂u
Y (t)

eu − ed
. (16)

Then the value of this portfolio process satisfies

V (t) = Π̂Y (t)∀t ∈ {0, ..., N} , (17)

and
V (t− 1) = ĥS(t)S(t− 1) + ĥB(t)B(t− 1) + C(t− 1) , ∀t ∈ I . (18)

Proof

By using the equations (13), (14), (15), (16) into equations (17) and (18) we obtain

V u(t) = ĥS(t)S(t− 1)eu + ĥB(t)B(t− 1)ed = Π̂u
Y (t) ,

similiar calculations proves V d(t) = Π̂d
Y (t), hence (17) holds. Also replacing equations

(13), (14), (15), (16) into the right hand side of (18), the latter is equal to Π̂Y (t − 1),
which we proved is equal to V (t− 1), hence (18) holds.

Theorem 5.3
If r 6∈ (d, u) there is no probability measure Pp on the sample space ΩN such that the
discounted stock price {Ŝ(t)}t∈I is a martingale. For r ∈ (d, u), {Ŝ(t)}t∈I is a martingale
with respect to the probability measure Pq where

q = er − ed

eu − ed
.

Moreover Pq is the only probability meausure on ΩN for which {Ŝ(t)}t∈I is a martingale.

Proof

By definition {Ŝ(t)}t∈I is a martingale if and only if

E[e−rtS(t)|Ŝ(1), ..., Ŝ(t− 1)] = e−r(t−1)S(t− 1) ,∀t ∈ I. (19)
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Clearly, conditioning on Ŝ(1), ..., Ŝ(t−1) is the same as taking the expectation conditional
to S(1), ..., S(t− 1), hence (19) is equivalent to

E[S(t)|S(1), ..., S(t− 1)] = erS(t− 1) ,∀t ∈ I.

Moreover

E[S(t)|S(1), ..., S(t− 1)] = E[S(t− 1) S(t)
S(t− 1) |S(1), ..., S(t− 1)] , (20)

however since S(t− 1) is known, and because S(t)/S(t− 1) is either eu with probability
p, or ed with probability 1− p, and is independent of S(1), ..., S(t− 1), it follows that

E[S(t)|S(1), ..., S(t− 1)] = S(t− 1)(eup+ ed(1− p)) .

Therefore E[S(t)|S(1), ..., S(t− 1)] = erS(t− 1) holds iff er = eup+ ed(1− p). The latter
has a solution p ∈ (0, 1) iff r ∈ (d, u), when it exists it is given by p = q.

Theorem 5.4
Let Ep[·] denote the expectation in the probability measure Pp. We have

Ep[S(N)] = S(0)(eup+ ed(1− p))N , Eq[S(N)] = S(0)erN . (21)

Proof

We prove only the first formula because the second formula follows by the first one using
that euq + ed(1− q) = er. We have

Ep[S(N)] = Ep[S(0) exp(X1 + ...+XN)] = S(0)Ep[Y ] , (22)

where Y is the random variable Y = exp(X1 + ...+X2) = exp(uNH(ω)+dNT (ω)), ω ∈ Ω.
Now using that NT = N −NH it follows that

Ep[S(N)] = S(0)
∑
ω∈ΩN

euNH+dNT pNH (1− p)NT = S(0)edN(1− p)N
∑
ω∈ΩN

(
eup

ed(1− p)

)NH
.

Now, since for k = 0, ..., N there is
(
N
k

)
sample points ω ∈ ΩN such that NH(ω) = k, we

rewrite the above expresssion and using the binomial theorem, we obtain the following

Ep[S(N)] = S(0)eNd(1−p)N
N∑
k=0

(
N

k

)(
eup

ed(1− p)

)k
= S(0)eNd(1−p)N

(
1 + eup

ed(1− p)

)N

= S(0)(ed(1− p)eup)N .

Theorem 5.10
The density of the random variable S(t) is given by

fS(t)(x) = Ix>0

xσ
√

2πt
exp

(
−(log x− logS(0)− αt)2

2σ2t

)
,

where Ix>0 is the indicator function of the set x > 0.
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Proof

The density of S(t) is given by

fS(t)(x) d
dxFS(t)(x) ,

where FS(t) is the distribution of S(t), i.e.,

FS(t)(x) = P(S(t) ≤ x) .

Clearly, fS(t) = FS(t) = 0 for x ≤ 0. For x > 0 we use that

S(t) ≤ x if and only if W (t) ≤ 1
σ

(
log x

S(0) − αt
)

:= A(x) .

Thus
P(S(t) ≤ x) = P(−∞ < W (t) ≤ A(x)) = 1√

2πt

∫ A(x)

−∞
e−

y2
2t dt ,

where for the second equality we used that W (t) ∈ N (0, t). Hence

fS(t)(x) = d
dx

(
1√
2πt

∫ A(x)

−∞
e−

y2
2t dt

)
= 1√

2πt
e−

A(x)2
2t

dA(x)
dx

for x > 0, that is

fS(t)(x) = 1
σx
√

2πt
exp

(
−(log x− logS(0)− αt)2

2σ2t

)
, x > 0 .

Theorem 6.2
The Black-Scholes price at time t of a European call option with strike K > 0, maturity
time T > 0 is given by C(t, S(t)) where

C(t, x) = xΦ(d1)−Ke−rτΦ(d2) , d2 =
log

(
x
K

)
+ (r − 1

2σ
2)τ

σ
√
τ

, d1 = d2 + σ
√
τ , (23)

where Φ is the standard normal distribution. The Black-Scholes price of the corresponding
put option is given by P (t, S(t)) where

P (t, x) = −xΦ(−d1) +Ke−rτΦ(−d2) .

Moreover the put-call parity holds

C(t, S(t))− P (t, S(t)) = S(t)−Ke−rτ . (24)
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Proof

We derive the price for call options, since the argument is similiar for put options. Recall
the pay-off function g(z) = (z −K)+, we have

C(t, x) = e−rτ√
2π

∫
R

g
(
xeτ(r−σ

2
2 )+σ

√
τy −K

)
e−

y2
2 dy .

Note that g is nonzero when xeτ(r−σ
2

2 )+σ
√
τy −K i.e. when y > −d2. Thus using −1

2y
2 +

σ
√
τy = −1

2(y − σ
√
τ)2 + σ2τ

2 . Thus we obtain

C(t, x) = e−rτ√
2π

(
xeτ(r−σ

2
2 )+σ2τ

2

∫ ∞
−d2

e−
1
2 (y−σ

√
τ)2 dy −K

∫ ∞
−d2

e−
y2
2 dy

)
.

Now consider the left integral with the change of variables u = y − σ
√
τ , which gives

the lower integral limit u = −d2 − σ
√
τ = −d1. Now since we have two integrals of even

functions, symmetric around zero, we have

C(t, x) = e−rτ√
2π

(
xeτr

∫ ∞
−d1

e−
1
2u

2 du−K
∫ ∞
−d2

e−
y2
2 dy

)
=

= e−rτ√
2π

(
xeτr

∫ d1

−∞
e−

1
2u

2 du−K
∫ d2

−∞
e−

y2
2 dy

)
=

= xΦ(d1)−Ke−rτΦ(d2) .
Finally, the put-call parity follows since

C(t, x)− P (t, x) = xΦ(d1)−Ke−rτΦ(d2)− (−xΦ(−d1) +Ke−rτΦ(−d2)) =

= x(Φ(d1) + Φ(d1))−Ke−rτ (Φ(d2) + Φ(d2)) = x−Ke−rτ ,

since Φ(u) + Φ(−u) = 1. Thus the claims follows.
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